
Suggested line of text (optional):

WE START WITH YES.

THE ALLINEA DDT
DEBUGGER AND MAP
PERFORMANCE
PROFILER

erhtjhtyhy

RYAN HULGUIN
Applications Engineer
ARM

Ryan.Hulguin@arm.com

May 3, 2017

Argonne, IL

AS OF DECEMBER 2016, ALLINEA IS PART OF
ARM

Our objective:

Remain the trusted leader in cross platform HPC tools

• We will continue to work with our customers, partners and you!

The same successful team…

• We can now respond quicker and deliver our roadmap faster

… is stronger than ever…

• We remain 100% committed to providing cross-platforms tools for HPC

… as committed as ever…

• We are working with vendors to support the next generations of systems.

… and looking forward to the future.

ALLINEA TOOLKITS SAVE USERS’ AND
DEVELOPERS’ TIME

Allinea Forge
(debugging)

Allinea Forge
(profiling)

Allinea Performance
Reports

. Bottleneck
isolation

Solver
tuning

Bug
Resolution

Code
validation

Production

We do tools for a single reason:

help people save their time.

TIME

ACHIEVING PERFORMANCE PORTABILITY

Use
powerful

tools
easily

Retrieve
useful data

Turn “a lot
of” data

into
meaningful
information

Turn
information
into better

code

USING POWERFUL TOOLS MORE EASILY

Remote
Client

• Fast and easy
alternative to
X-Forwarding
and VNC

Reverse
Connect

• Simplifies
integration with
job submission
scripts

Continuous
Integration

• Automation of
debugging &
profiling for
professional
workflows

GENERATING USEFUL AND MEANINGFUL
INFORMATION

Scalable &

Portable

Data collection

Data

processing

ALLINEA DDT – THE DEBUGGER
 Who had a rogue behavior ?

– Merges stacks from processes and threads

 Where did it happen?

– leaps to source

 How did it happen?

– Diagnostic messages

– Some faults evident instantly from source

 Why did it happen?

– Unique “Smart Highlighting”

– Sparklines comparing data across processes

Run

with Allinea tools

Identify
a problem

Gather info
Who, Where,

How, Why

Fix

PREPARING CODE FOR USE WITH DDT
 As with any debugger, code must be compiled with the debug flag typically -g

 It is recommended to turn off optimization flags i.e. –O0

 Leaving optimizations turned on can cause the compiler to optimize out some

variables and even functions making it more difficult to debug

SEGMENTATION FAULT
 In this example, the application crashes with a segmentation error outside of DDT.



 What happens when it runs under DDT?

SEGMENTATION FAULT IN DDT

 DDT takes you to the exact line where Segmentation fault occurred, and you can

pause and investigate

INVALID MEMORY ACCESS

 The array tab is a 13x13 array, but the application is trying to write a value to

tab(4198128,0) which causes the segmentation fault.

 i is not used, and x and y are not initialized

ADVANCED MEMORY DEBUGGING

 Run at problem size (49,152 processes)

… A DEBUGGER!

Ah… Integer

overflow!

Debugging at Scale Requires Powerful Visual

Representations

caption

ENABLE LARGE SCALE DEBUGGING AND REGRESSION
TESTING WITH OFFLINE DEBUGGING

FIVE GREAT THINGS TO TRY WITH ALLINEA
DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write beyond
array bounds

Detect stale memory
allocations

caption

THE UNCOMFORTABLE TRUTH ABOUT
APPLICATIONS

GLEAN DEEP INSIGHT FROM OUR
SOURCE-LEVEL PROFILER

Track memory usage across
the entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

Small data files

<5% slowdown

No instrumentation

No recompilation

ALLINEA MAP – THE PROFILER

HOW ALLINEA MAP IS DIFFERENT
Adaptive
sampling

Sample
frequency
decreases
over time

Data never
grows too

much

Run for as
long as you

want

Scalable
Same scalable
infrastructure

as Allinea DDT

Merges
sample data at

end of job

Handles very
high core

counts, fast

Instruction
analysis

Categorizes
instructions

sampled

Knows where
processor

spends time

Shows
vectorization
and memory
bandwidth

Thread
profiling

Core-time not
thread-time

profiling

Identifies lost
compute time

Detects
OpenMP
issues

Integrated Part of Forge
tool suite

Zoom and drill
into profile

Profiling
within your

code

PREPARING CODE FOR USE WITH MAP
 To see the source code, the application should be compiled with the debug flag

typically -g

 It is recommended to always keep optimization flags on when profiling

MATRIX MULTIPLICATION EXAMPLE

Master process

Slave process 1

Slave process n-1

C = A x B + C

MATRIX MULTIPLICATION PROFILE

ENABLING VECTORIZATION
The compiler is unable to vectorize efficiently because of the following line
in C:
res += A[i*size+k]*B[k*size+j];

and in F90:
res=A(i*size+k)*B(k*size+j)+res

rewrite mmult to have
in C:
res += A[i*size+k]*transB[j*size+k];

and in F90:
res=A(i*size+k)*transB(j*size+k)+res

IMPROVING DATA LAYOUT AND ACCESS PATTERN

SERIAL BOTTLENECK

INEFFICIENT I/O
if(myrank == 0)

{

 printf("%d: Receiving result matrix...\n", myrank);

 […]

}

else

{

 printf("%d: Sending result matrix...\n", myrank);

 […]

}

if(myrank == 0)

{

 printf("%d: Writing results...\n", myrank);

 mwrite(size, mat_c, filename);

}

IMPROVE SCALABILITY OF I/O ROUTINES
printf("%d: Writing results...\n", myrank);

MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_CREATE+MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_DOUBLE, MPI_DOUBLE, "native",

MPI_INFO_NULL);

MPI_File_write_at(fh, slice*myrank*sizeof(double), &mat_c[0],

slice, MPI_DOUBLE, &st);

MPI_Barrier(MPI_COMM_WORLD);

MPI_File_close(&fh);

3X SPEEDUP FROM ORIGINAL CODE

SIX GREAT THINGS TO TRY WITH ALLINEA MAP

Find the peak
memory use

Fix an MPI imbalance
Remove I/O
bottleneck

Make sure OpenMP
regions make sense

Improve memory
access

Restructure for
vectorization

PUBLIC ROADMAP: 7.1 (JULY 2017)

Debugging

Profiling

Platform

• Fast C++ mem debug

• Improved STL support

• Subset of ranks

• GPU source-code

• Metric histogram preview

• IBM Spectrum PMIx

• OpenPOWER

• ARMv8

PUBLIC ROADMAP: 8.0 (NOVEMBER 2017)

Debugging

Profiling

Platform

• Python support

• AddressSanitizer plugin

• Python support

• Improved performance
on Intel KNL

• CUDA 9

• OpenPOWER 9

GETTING STARTED ON MIRA/COOLEY/THETA
 (Optional) Install local client on your laptop

– www.allinea.com/products/forge/downloads
• Linux – installs full set of tools
• Windows, Mac – just a remote client to the remote system

– Run the installation and software
– “Connect to remote host”
– Hostname:

• username@mira.alcf.anl.gov
• username@cooley.alcf.anl.gov
• username@theta.alcf.anl.gov

– Remote installation directory: /soft/debuggers/ddt

– Click Test

 You are now ready to debug on Mira/Vesta/Cetus – or debug and profile on Cooley/Theta

mailto:username@cetus.alcf.anl.gov
mailto:username@cooley.alcf.anl.gov
mailto:username@cooley.alcf.anl.gov

ENABLING ALLINEA TOOLS
 On the machines that use Softenv, modify ~/.soft to include

+ddt

 On the machines that use modules, load the forge module

module load forge/7.0

STATIC LINKING EXTRA STEPS
 To enable advanced memory debugging features, you must link explicitly against

our memory libraries

 Simply add the link flags to your Makefile, or however appropriate

lflags = -L/soft/debuggers/ddt/lib/64 -Wl,--undefined=malloc -ldmalloc -Wl,--allow-

multiple-definition

 In order to profile, static profiler libraries must be created with the command

make-profiler-libraries --libtype=static

Instructions to link the libraries will be provided after running the above command

SAMPLE USAGE COMMANDS
 Mira

ddt --connect --mpiargs="--block $COBALT_PARTNAME" --processes=128 -procs-

per-node=1 ./myProgram.exe

 Theta

rpn=64

ddt aprun -n $((COBALT_JOBSIZE*rpn)) -N $rpn -d $depth -j 1 -cc depth

./myProgram.exe

ALLINEA_OFFLINE_LICENCE_TIMEOUT=1000000 map aprun -n

$((COBALT_JOBSIZE*rpn)) -N $rpn -d $depth -j 1 -cc depth ./myProgram.exe

QUESTIONS?

www.anl.gov

Suggested closing statement (optional):

WE START WITH YES.

AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

THANK YOU

